Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 126(6): 397-404, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568172

RESUMO

ABSTRACT: Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.


Assuntos
Dessecação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos da radiação , Rad51 Recombinase/metabolismo , Exposição à Radiação/efeitos adversos , Exposição à Radiação/análise , Doses de Radiação
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542312

RESUMO

Radiation therapy for abdominopelvic malignancies often results in damage to the gastrointestinal tract (GIT) and permanent changes in bowel function. An overlooked component of the pathophysiology of radiation-induced bowel injury is the role of the gut microbiome. The goal of this research was to identify the impacts of acute radiation exposure on the GIT and gut microbiome. C57BL/6 mice exposed to whole-body X-rays (0.1-3 Gy) were assessed for histological and microbiome changes 48 h post-radiation exposure. Within the ileum, a dose of 3 Gy significantly decreased crypt depth as well as the number of goblet cells, but increased overall goblet cell size. Overall, radiation altered the microbial distribution within each of the main phyla in a dose- and tissue-dependent manner. Within the Firmicutes phylum, high dose irradiation resulted in significant alterations in bacteria from the class Bacilli within the small bowels, and from the class Clostridia in the large bowels. The 3 Gy radiation also significantly increased the abundance of bacterial families from the Bacteroidetes phylum in the colon and feces. Overall, we identified various alterations in microbiome composition following acute radiation exposure, which could potentially lead to novel biomarkers for tracking patient toxicities or could be used as targets for mitigation strategies against radiation damage.


Assuntos
Microbioma Gastrointestinal , Exposição à Radiação , Lesões por Radiação , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Trato Gastrointestinal/microbiologia , Bactérias/efeitos da radiação , Firmicutes , Raios X
3.
Cells ; 12(19)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830558

RESUMO

FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Humanos , Divisão Celular , Linhagem Celular , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
4.
Radiat Res ; 200(1): 48-64, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141110

RESUMO

The CGL1 human hybrid cell system has been utilized for many decades as an excellent cellular tool for investigating neoplastic transformation. Substantial work has been done previously implicating genetic factors related to chromosome 11 to the alteration of tumorigenic phenotype in CGL1 cells. This includes candidate tumor suppressor gene FOSL1, a member of the AP-1 transcription factor complex which encodes for protein FRA1. Here we present novel evidence supporting the role of FOSL1 in the suppression of tumorigenicity in segregants of the CGL1 system. Gamma-induced mutant (GIM) and control (CON) cells were isolated from 7 Gy gamma-irradiated CGL1s. Western, Southern and Northern blot analysis were utilized to assess FOSL1/FRA1 expression as well as methylation studies. GIMs were transfected to re-express FRA1 and in vivo tumorigenicity studies were conducted. Global transcriptomic microarray and RT-qPCR analysis were used to further characterize these unique cell segregants. GIMs were found to be tumorigenic in vivo when injected into nude mice whereas CON cells were not. GIMs show loss of Fosl/FRA1 expression as confirmed by Western blot. Southern and Northern blot analysis further reveals that FRA1 reduction in tumorigenic CGL1 segregants is likely due to transcriptional suppression. Results suggest that radiation-induced neoplastic transformation of CGL1 is in part due to silencing of the FOSL1 tumor suppressor gene promoter by methylation. The radiation-induced tumorigenic GIMs transfected to re-express FRA1 resulted in suppression of subcutaneous tumor growth in nude mice in vivo. Global microarray analysis and RT-qPCR validation elucidated several hundred differentially expressed genes. Downstream analysis reveals a significant number of altered pathways and enriched Gene Ontology terms genes related to cellular adhesion, proliferation, and migration. Together these findings provide strong evidence that FRA1 is a tumor suppressor gene deleted and epigenetically silenced after ionizing radiation-induced neoplastic transformation in the CGL1 human hybrid cell system.


Assuntos
Transformação Celular Neoplásica , Neoplasias Induzidas por Radiação , Animais , Camundongos , Humanos , Camundongos Nus , Transformação Celular Neoplásica/genética , Células HeLa , Genes Supressores de Tumor , Carcinogênese/genética , Neoplasias Induzidas por Radiação/patologia , Fenótipo , Genômica , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
5.
Radiat Res ; 199(3): 290-293, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745561

RESUMO

In 2017, a special edition of Radiation Research was published [Oct; Vol. 188 4.2 (https://bioone.org/journals/radiation-research/volume-188/issue-4.2)] which focused on a recently established radiobiology project within SNOLAB, a unique deep-underground research facility. This special edition included original articles, reviews and commentaries relevant to the research goals of this new project which was titled Researching the Effects of the Presence and Absence of Ionizing Radiation (REPAIR). These research goals were founded in understanding the biological effects of terrestrial and cosmic natural background radiation (NBR). Since 2017, REPAIR has evolved into a sub-NBR radiobiology research program which investigates these effects using multiple model systems and various biological endpoints. This paper summarizes the evolution of the REPAIR project over the first 6-years including its experimental scope and capabilities as well as research accomplishments.


Assuntos
Radiação de Fundo , Radiação Cósmica , Radiobiologia , Radiação Ionizante
6.
Bioengineering (Basel) ; 9(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049738

RESUMO

The lens of the eye is one of the most radiosensitive tissues. Although the exact mechanism of radiation-induced cataract development remains unknown, altered proliferation, migration, and adhesion have been proposed as factors. Lens epithelial cells were exposed to X-rays (0.1-2 Gy) and radiation effects were examined after 12 h and 7 day. Proliferation was quantified using an MTT assay, migration was measured using a Boyden chamber and wound-healing assay, and adhesion was assessed on three extracellular matrices. Transcriptional changes were also examined using RT-qPCR for a panel of genes related to these processes. In general, a nonlinear radiation response was observed, with the greatest effects occurring at a dose of 0.25 Gy. At this dose, a reduction in proliferation occurred 12 h post irradiation (82.06 ± 2.66%), followed by an increase at 7 day (116.16 ± 3.64%). Cell migration was increased at 0.25 Gy, with rates 121.66 ± 6.49% and 232.78 ± 22.22% greater than controls at 12 h and 7 day respectively. Cell adhesion was consistently reduced above doses of 0.25 Gy. Transcriptional alterations were identified at these same doses in multiple genes related to proliferation, migration, and adhesion. Overall, this research began to elucidate the functional changes that occur in lens cells following radiation exposure, thereby providing a better mechanistic understanding of radiation-induced cataract development.

7.
Radiat Prot Dosimetry ; 195(2): 114-123, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34402520

RESUMO

Living systems have evolved in the presence of naturally occurring ionising radiation. REPAIR is a research project investigating the biological effects of sub-natural background radiation exposure in SNOLAB, a deep-underground laboratory. Biological systems are being cultured within a sub-background environment as well as two control locations (underground and surface). A comprehensive dosimetric analysis was performed. GEANT4 simulation was used to characterise the contribution from gamma, muons and neutrons. Additionally, dose rates from radon, 40K and 14C were calculated based on measured activity concentrations. The total absorbed dose rate in the sub-background environment was 27 times lower than the surface control, at 2.48 ± 0.20 nGy hr-1, including a >400-fold reduction in the high linear energy transfer components. This modelling quantitatively confirms that the environment within SNOLAB provides a substantially reduced background radiation dose rate, thereby setting the stage for future sub-background biological studies using a variety of model organisms.


Assuntos
Exposição à Radiação , Radônio , Radiação de Fundo , Doses de Radiação , Radiobiologia , Radônio/análise
8.
J Environ Radioact ; 228: 106512, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341751

RESUMO

Extensive research has been conducted investigating the effects of ionizing radiation on biological systems, including specific focus at low doses. However, at the surface of the planet, there is the ubiquitous presence of ionizing natural background radiation (NBR) from sources both terrestrial and cosmic. We are currently conducting radiobiological experiments examining the impacts of sub-NBR exposure within SNOLAB. SNOLAB is a deep underground research laboratory in Sudbury, Ontario, Canada located 2 km beneath the surface of the planet. At this depth, significant shielding of NBR components is provided by the rock overburden. Here, we describe a Specialized Tissue Culture Incubator (STCI) that was engineered to significantly reduce background ionizing radiation levels. The STCI was installed 2 km deep underground within SNOLAB. It was designed to allow precise control of experimental variables such as temperature, atmospheric gas composition and humidity. More importantly, the STCI was designed to reduce radiological contaminants present within the underground laboratory. Quantitative measurements validated the STCI is capable of maintaining an appropriate experimental environment for sub-NBR experiments. This included reduction of sub-surface radiological contaminants, most notably radon gas. The STCI presents a truly novel piece of infrastructure enabling future research into the effects of sub-NBR exposure in a highly unique laboratory setting.


Assuntos
Radiação de Fundo , Monitoramento de Radiação , Radiobiologia , Incubadoras , Ontário , Radônio/análise
9.
Free Radic Biol Med ; 145: 300-311, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580949

RESUMO

BACKGROUND: Somatic cell hybrid systems generated by combining cancerous with non-cancerous cells provide useful model systems to study neoplastic transformation. Combined with recent advances in omics-based technologies, novel molecular signatures that drive radiation-induced carcinogenesis can be analyzed at an exceptional global level. METHODS: Here, we present a complete whole-transcriptome analysis of gamma-induced mutants (GIM) and gamma irradiated control (CON) segregants isolated from the CGL1 (HeLa x normal fibroblast) human hybrid cell-system exposed to high doses of radiation. Using the Human Transcriptome Array 2.0 microarray technology and conservative discrimination parameters, we have elucidated 1067 differentially expressed genes (DEGs) between tumorigenic and non-tumorigenic cells. RESULTS: Gene ontology enrichment analysis revealed that tumorigenic cells demonstrated shifts in extracellular matrix (ECM) and cellular adhesion profiles, dysregulation of cyclic AMP (cAMP) signaling, and alterations in nutrient transport and cellular energetics. Furthermore, putative upstream master regulator analysis demonstrated that loss of TGFß1 signaling due to reduced SMAD3 expression is involved in radiation-induced carcinogenesis. CONCLUSIONS: Taken together, this study presents novel insights into specific gene expression and pathway level differences that contribute to radiation-induced carcinogenesis in a human cell-based model. This global transcriptomic analysis and our published tumor suppressor gene deletion loci analyses will allow us to identify and functionally test candidate nexus upstream tumor suppressor genes that are deleted or silenced after exposure to radiation.


Assuntos
Carcinogênese/genética , Proteínas de Neoplasias/genética , Neoplasias Induzidas por Radiação/genética , Transcriptoma/efeitos da radiação , Carcinogênese/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Raios gama/efeitos adversos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HeLa , Humanos , Células Híbridas/efeitos da radiação , Mutação/efeitos da radiação , Neoplasias Induzidas por Radiação/patologia
10.
J Occup Environ Hyg ; 16(11): 745-756, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31532354

RESUMO

McIntyre Powder (MP) is a finely ground aluminum powder that was used between 1943 and 1979 as a prophylaxis for silicosis. Silicosis is a chronic lung disease caused by the inhalation of crystalline silica dust and was prevalent in the Canadian mining industry during this time period. The McIntyre Research Foundation developed, patented, and produced the MP and distributed it to licensees in Canada, the United States, Mexico, Chile, Belgian Congo, and Western Australia. In the province of Ontario, Canada it is estimated that at least 27,500 miners between 1943 and 1979 were exposed to MP. The present study was undertaken to examine the chemical and physical characteristics of two variations of MP (light grey and black). Chemical analyses (using X-ray Fluorescence and Inductively Coupled Plasma approaches) indicate that the black MP contains significantly higher concentrations of aluminum and metal impurities than the light grey MP (p < 0.001). X-ray diffractometry shows that while aluminum hydroxide dominates the aluminum speciation in both variations, the higher total aluminum content in the black MP is attributable to a greater proportion of elemental aluminum. Physical characterization (using electron microscopy, light microscopy, and dynamic light scattering) indicates that the light grey MP consists of particles ranging from 5 nm to 5 µm in diameter. Atomic Force Microscopy shows that the light grey MP particles in the nanoparticle range (<100 nm) have a mode between 5 and 10 nm. Consequently, it is possible that inhaled smaller MP nanoparticles may be transported via blood and lymph fluid circulation to many different organs including the brain. It is also possible for inhaled larger MP particles to deposit onto lung tissue and for potential health effects to arise from inflammatory responses through immune activation. This MP characterization will provide crucial data to help inform future toxicological, epidemiological, and biological studies of any long-term effects related to the inhalation of aluminum dust and nanomaterials.


Assuntos
Alumínio/análise , Poeira/análise , Nanopartículas/análise , Exposição Ocupacional/análise , Silicose/prevenção & controle , Humanos , Pulmão/química , Ontário , Pós , Silicose/etiologia
11.
Radiat Res ; 188(4.2): 512-524, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28873027

RESUMO

Cellular transformation assays have been utilized for many years as powerful in vitro methods for examining neoplastic transformation potential/frequency and mechanisms of carcinogenesis for both chemical and radiological carcinogens. These mouse and human cell based assays are labor intensive but do provide quantitative information on the numbers of neoplastically transformed foci produced after carcinogenic exposure and potential molecular mechanisms involved. Several mouse and human cell systems have been generated to undertake these studies, and they vary in experimental length and endpoint assessment. The CGL1 human cell hybrid neoplastic model is a non-tumorigenic pre-neoplastic cell that was derived from the fusion of HeLa cervical cancer cells and a normal human skin fibroblast. It has been utilized for the several decades to study the carcinogenic/neoplastic transformation potential of a variety of ionizing radiation doses, dose rates and radiation types, including UV, X ray, gamma ray, neutrons, protons and alpha particles. It is unique in that the CGL1 assay has a relatively short assay time of 18-21 days, and rather than relying on morphological endpoints to detect neoplastic transformation utilizes a simple staining method that detects the tumorigenic marker alkaline phosphatase on the neoplastically transformed cells cell surface. In addition to being of human origin, the CGL1 assay is able to detect and quantify the carcinogenic potential of very low doses of ionizing radiation (in the mGy range), and utilizes a neoplastic endpoint (re-expression of alkaline phosphatase) that can be detected on both viable and paraformaldehyde fixed cells. In this article, we review the history of the CGL1 neoplastic transformation model system from its initial development through the wide variety of studies examining the effects of all types of ionizing radiation on neoplastic transformation. In addition, we discuss the potential of the CGL1 model system to investigate the effects of near zero background radiation levels available within the radiation biology lab we have established in SNOLAB.


Assuntos
Transformação Celular Neoplásica/efeitos da radiação , Fibroblastos/citologia , Células Híbridas/patologia , Células Híbridas/efeitos da radiação , Neoplasias Induzidas por Radiação/patologia , Pele/citologia , Animais , Células HeLa , Humanos
12.
Radiat Res ; 188(4.2): 470-474, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28723273

RESUMO

Considerable attention has been given to understanding the biological effects of low-dose ionizing radiation exposure at levels slightly above background. However, relatively few studies have been performed to examine the inverse, where natural background radiation is removed. The limited available data suggest that organisms exposed to sub-background radiation environments undergo reduced growth and an impaired capacity to repair genetic damage. Shielding from background radiation is inherently difficult due to high-energy cosmic radiation. SNOLAB, located in Sudbury, Ontario, Canada, is a unique facility for examining the effects of sub-background radiation exposure. Originally constructed for astroparticle physics research, the laboratory is located within an active nickel mine at a depth of over 2,000 m. The rock overburden provides shielding equivalent to 6,000 m of water, thereby almost completely eliminating cosmic radiation. Additional features of the facility help to reduce radiological contamination from the surrounding rock. We are currently establishing a biological research program within SNOLAB: Researching the Effects of the Presence and Absence of Ionizing Radiation (REPAIR project). We hypothesize that natural background radiation is essential for life and maintains genomic stability, and that prolonged exposure to sub-background radiation environments will be detrimental to biological systems. Using a combination of whole organism and cell culture model systems, the effects of exposure to a sub-background environment will be examined on growth and development, as well as markers of genomic damage, DNA repair capacity and oxidative stress. The results of this research will provide further insight into the biological effects of low-dose radiation exposure as well as elucidate some of the processes that may drive evolution and selection in living systems. This Radiation Research focus issue contains reviews and original articles, which relate to the presence or absence of low-dose ionizing radiation exposure.


Assuntos
Radiação de Fundo/efeitos adversos , Laboratórios , Exposição à Radiação/efeitos adversos , Radiobiologia/métodos , Animais , Radiação Cósmica/efeitos adversos , Radiobiologia/instrumentação , Salmonidae/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...